Water Cooler Talk

How AI for marketing can improve your customer experience

The idea that your organization should have a customer focus instead of a product focus is not new. There are several ways to improve the customer experience, and one of them is with AI. It allows your marketers to discover new opportunities within the customer base by identifying new audiences and setting up offers and experiences for these audiences. This way, your organization will significantly increase your brand loyalty and engagement.

It’s important to fully understand the exact value of advanced analytics and AI/ML for optimized and dynamically curated customer experiences in retail banking. 

Find out about what “More than a CDP” means.

The need for AI in Customer Data Platforms (CDP)

It’s only possible to understand your audience by analyzing them. When you talk directly to them and gather feedback, that feedback is essential data on how they are responding—or not responding—to your product. You collect all customer data to identify their needs, and a CDP allows you to do so. The actual challenge lies in how to use that intelligence to meet those needs. This challenge is perfectly feasible when you focus on a minimal number of customers. Still, when you have millions of customers to manage relationships with, this is just impossible. AI is a real asset when dealing with millions of customers, as it allows you to gather intelligence and put it into action more efficiently.

In the case of a CDP, it gives your business users real-time actionable insights into individual customers so you can maximize your targeting precision by communicating the right personalized and relevant message to the right people. In other words, CDPs provide a holistic view of the customer to help execute and optimize personalized journeys. With such a platform, you can analyze, contextualize, and identify new opportunities on the spot. The system immediately responds with the best recommendation in real time to inbound requests coming from any channel. And this is for each individual customer or audience.

With more advanced CDPS, you can analyze, contextualize, and identify new opportunities on the spot. Next to that, the system also sends out personalized experiences in real time.

Next to that, the system sends out personalized experiences in real-time. Those experiences are triggered by alerts when a customer becomes part of an audience or shows a change in behavior. This way, you will deliver better, faster, and more precisely predicted customer experiences.

But it does not end there. With machine learning, you no longer review spreadsheets and crunch numbers after the facts. The machine learns as it goes, interacting with individual consumers and adapting to their individual needs in real time based on their responses. Machine Learning gives your employees more time to focus on other—more complex—cases.

Clustering capabilities and look-alike modeling

From an organizational perspective, AI projects are currently delivering value. We see data science teams as the driving force in those pilot projects in commercial departments like marketing & sales. However, to truly get value from AI, it must be scaled across the department, allowing business users to integrate it into their day-to-day work.

At NGDATA, we saw that common use cases could leverage AI as long as it is easy for a marketer to apply to discover new opportunities. NGDATA’s Intelligent Engagement Platform (IEP) provides AI capabilities built for the marketer: clustering and look-alike modeling.

To truly get value out of AI, it must be scaled across the department, allowing business users to integrate it into their day-to-day work.


There are probably a few contacts in your database that you haven’t contacted yet. You want to have a relevant conversation with those people, but that’s difficult on an individual level. The alternative is to create an audience based on a set of characteristics you think might be relevant. This method often turns out to be a very generic audience or one that only contains a small number of people.

You need your CDP’s capability to create a clustering algorithm, which leverages AI to automatically divide a group of contacts into smaller clusters with people who have similar profiles based on all attributes. Marketers can then create an offer specifically tailored to those individual clusters.

Look-alike modeling

When customers recently purchased one of your products or services, this is obviously good news for your business. You can then assume that individuals with comparable attributes are more likely to show similar behavior. Look-alike modeling enables the marketer to select a look-alike group of customers who resemble the most to the ‘exemplar’ customers based on all available data inside the IEP, including declarative next to behavioral and transactional data.

Through AI, you can select an audience that shares similar characteristics (attributes of the customer profiles) with the group of customers that has already shown the desired behavior. And to get them to take that same action, the look-alike audience probably needs a little nudge.

Transformative marketing and business approach

Closing this gap between analytics and execution means letting marketers truly manage the conversation with the customer at scale, both in and outbound, on an individual level. By leveraging your data to deliver the most relevant, timely, and context-aware actions that match the needs of every customer, you’ll become transformative in how you approach your marketing and your business.

NGDATA’s Intelligent Engagement Platform (IEP) unifies customer intelligence and allows you to engage with the customer in real time.

Learn how the NGDATA Intelligent Engagement Platform works